descargar 0.94 Mb.
|
Isis, lii (1961), 161-93. NATURALEZA DE LA CIENCIA NORMAL 61 diseño de experimentos y en la interpretación de los resultados.8 Una vez establecido el fenómeno del calentamiento por compresión, todos los experimentos ulteriores en ese campo fueron, en esa forma, dependientes del paradigma. Dado el fenómeno, ¿de qué otra forma hubiera podido seleccionarse un experimento para elucidarlo? Veamos ahora los problemas teóricos de la ciencia normal, que caen muy aproximadamente dentro de las mismas clases que los experimentales o de observación. Una parte del trabajo teórico normal, aunque sólo una parte pequeña, consiste simplemente en el uso de la teoría existente para predecir información fáctica de valor intrínseco. El establecimiento de efemérides astronómicas, el cálculo de las características de las lentes y la producción de curvas de propagación de radio son ejemplos de problemas de ese tipo. Sin embargo, los científicos los consideran generalmente como trabajos de poca monta que deben dejarse a los ingenieros y a los técnicos. Muchos de ellos en ningún momento aparecen en periódicos científicos importantes. Pero esos mismos periódicos contienen numerosas discusiones teóricas de problemas que, a los no científicos, deben pa-recerles casi idénticos. Son las manipulaciones de teoría emprendidas no debido a que las predicciones que resultan sean intrínsecamente valiosas, sino porque pueden confrontarse directamente con experimentos. Su fin es mostrar una nueva aplicación del paradigma o aumentar la precisión de una aplicación que ya se haya hecho. La necesidad de este tipo de trabajo nace de las enormes dificultades que frecuentemente se encuentran para desarrollar puntos de contacto 8 T. S. Kuhn, "The Caloric Theory of Adiabatic Com-pression", Isis, XLIX (1958), 132-40. 62 NATURALEZA DE LA CIENCIA NORMAL entre una teoría y la naturaleza. Estas dificultades pueden ilustrarse brevemente por medio de un examen de la historia de la dinámica después de Newton. A principios del siglo XVIII, aquellos científicos que hallaron un paradigma en Principia dieron por sentada la generalidad de sus conclusiones y tenían todas las razones para hacerlo así. Ningún otro trabajo conocido en la historia de la ciencia ha permitido simultáneamente un aumento tan grande tanto en el alcance como en la precisión de la investigación. En cuanto al cielo, Newton había derivado las Leyes de Kepler sobre el movimiento planetario y había explicado, asimismo, algunos de los aspectos observados en los que la Luna no se conformaba a ellas. En cuanto a la Tierra, había derivado los resultados de ciertas observaciones dispersas sobre los péndulos, los planos inclinados y las mareas. Con la ayuda de suposiciones complementarias, pero ad hoc, había sido capaz también de derivar la Ley de Boyle y una fórmula importante para la velocidad del sonido en el aire. Dado el estado de las ciencias en esa época, el éxito de estas demostraciones fue extraordinariamente impresionante. Sin embargo, dada la generalidad presuntiva de las Leyes de Newton, el número de esas aplicaciones no era grande y Newton casi no desarrolló otras. Además, en comparación con lo que cualquier graduado de física puede lograr hoy en día con esas mismas leyes, las pocas aplicaciones de Newton no fueron ni siquiera desarrolladas con precisión. Limitemos la atención por el momento, al problema de la precisión. Ya hemos ilustrado su aspecto empírico. Fue necesario un equipo especial —el aparato de Cavendish, la máquina de Atwood o los telescopios perfeccionados— para proporcionar los datos especiales que exigían las NATURALEZA DE LA CIENCIA NORMAL 63 aplicaciones concretas del paradigma de Newton. Del lado de la teoría existían dificultades similares para obtener el acuerdo. Al aplicar sus leyes a los péndulos, por ejemplo, Newton se vio obligado a considerar el disco como un punto de masa, con el fin de proporcionar una definición única de la longitud del péndulo. La mayoría de sus teoremas, siendo las escasas excepciones hipotéticas y preliminares, pasaban también por alto el efecto de la resistencia del aire. Eran aproximaciones físicas que tenían solidez. Sin embargo, como aproximaciones restringían el acuerdo que podía esperarse entre las predicciones de Newton y los experimentos reales. Las mismas dificultades aparecieron, de manera todavía más clara, en la aplicación de la teoría de Newton al firmamento. Las simples observaciones telescópicas cuantitativas indican que los planetas no obedecen completamente a las Leyes de Kepler, y la teoría de Newton indica que no deberían hacerlo. Para derivar esas leyes, Newton se había visto obligado a desdeñar toda la atracción gravitacional, excepto la que existe entre los planetas individuales y el Sol. Puesto que los planetas se atraen también unos a otros, sólo podía esperarse un acuerdo aproximado entre la teoría aplicada y la observación telescópica.9 Como en el caso de los péndulos, la confirmación obtenida fue más que satisfactoria para quienes la obtuvieron. No existía ninguna otra teoría que se acercara tanto a la realidad. Ninguno de los que pusieron en tela de juicio la validez del trabajo de Newton, lo hizo a causa de su limitado acuerdo con el experimento y la observación. Sin embargo, esas limitaciones de concordancia de 9 Wolf, op. cit., pp. 75-81, 96-101; y William Whewell, History of the Inductive Sciences (ed. rev.; Londres, 1847), II, 213-71. 64 NATURALEZA DE LA CIENCIA NORMAL jaron muchos problemas teóricos fascinantes a los sucesores de Newton. Fueron necesarias técnicas teóricas para determinar, por ejemplo, la "longitud equivalente" de un péndulo masivo. Fueron necesarias asimismo técnicas, para ocuparse de los movimientos simultáneos de más de dos cuerpos que se atraen mutuamente. Esos problemas y muchos otros similares ocuparon a muchos de los mejores matemáticos de Europa durante el siglo XVIII y los primeros años del XIX. Los Bernoulli, Euler, Lagrange, Laplace y Gauss, realizaron todos ellos parte de sus trabajos más brillantes en problemas destinados a mejorar la concordancia entre el paradigma de Newton y la naturaleza. Muchas de esas mismas figuras trabajaron simultáneamente en el desarrollo de las matemáticas necesarias para aplicaciones que Newton ni siquiera había intentado produciendo, por ejemplo, una inmensa literatura y varias técnicas matemáticas muy poderosas para la hidrodinámica y para el problema de las cuerdas vibratorias. Esos problemas de aplicación representan, probablemente, el trabajo científico más brillante y complejo del siglo XVIII. Podrían descubrirse otros ejemplos por medio de un examen del periodo posterior al paradigma, en el desarrollo de la termodinámica, la teoría ondulatoria de la luz, la teoría electromagnética o cualquier otra rama científica cuyas leyes fundamentales sean totalmente cuantitativas. Al menos en las ciencias de un mayor carácter matemático, la mayoría del trabajo teórico es de ese tipo. Pero no todo es así. Incluso en las ciencias matemáticas hay también problemas teóricos de articulación de paradigmas y durante los periodos en que el desarrollo científico fue predominantemente cualitativo, dominaron estos problemas. Algunos de los problemas, tanto en las ciencias NATURALEZA DE LA CIENCIA NORMAL 65 más cuantitativas como en las más cualitativas, tienden simplemente a la aclaración por medio de la reformulación. Por ejemplo, los Principia no siempre resultaron un trabajo sencillo de aplicación, en parte debido a que conservaban algo de la tosquedad inevitable en un primer intento y en parte debido a que una fracción considerable de su significado sólo se encontraba implícito en sus aplicaciones. Por consiguiente, de los Ber-noulli, d'Alembert y Lagrange, en el siglo XVIII. a los Hamilton, Jacobi y Hertz, en el XIX, muchos de los físicos matemáticos más brillantes de Europa se dieron repetidamente a la tarea de reformu-lar la teoría de Newton en una forma equivalente, pero más satisfactoria lógica y estéticamente. O sea, deseaban mostrar las lecciones implícitas y explícitas de los Principia en una versión más coherente, desde el punto de vista de la lógica, y que fuera menos equívoca en sus aplicaciones a los problemas recién planteados por la mecánica.10 En todas las ciencias han tenido lugar, repetidamente, reformulaciones similares de un paradigma; pero la mayoría de ellas han producido cambios más substanciales del paradigma que las reformulaciones de los Principia que hemos citado. Tales cambios son el resultado del trabajo empírico previamente descrito como encaminado a la articulación de un paradigma. En realidad, la clasificación de ese tipo de trabajo como empírico fue arbitraria. Más que cualquier otro tipo de investigación normal, los problemas de la articulación de paradigmas son a la vez teóricos y experimentales; los ejemplos dados antes servirán igualmente bien en este caso. Antes de que pudiera construir su equipo y realizar medi- 10 René Dugas, Histoire de la Mecanique (Neuchâtel, 1950), Libros IV-V. 66 NATURALEZA DE LA CIENCIA NORMAL ciones con él, Coulomb tuvo que emplear teoría eléctrica para determinar cómo debía construir dicho equipo. La consecuencia de sus mediciones fue un refinamiento de esa teoría. O también, los hombres que idearon los experimentos que debían establecer la distinción entre las diversas teorías del calentamiento por compresión fueron generalmente los mismos que habían formulado las versiones que iban a ser comparadas. Trabajaban tanto con hechos como con teorías y su trabajo no produjo simplemente una nueva información sino un paradigma más preciso, obtenido mediante la eliminación de ambigüedades que había retenido el original a partir del que trabajaban. En casi todas las ciencias, la mayor parte del trabajo normal es de este tipo. Estas tres clases de problemas —la determinación del hecho significativo, el acoplamiento de los hechos con la teoría y la articulación de la teoría— agotan, creo yo, la literatura de la ciencia normal, tanto empírica como teórica. Por supuesto, no agotan completamente toda la literatura de la ciencia. Hay también problemas extraordinarios y su resolución puede ser la que hace que la empresa científica como un todo resulte tan particularmente valiosa. Pero los problemas extraordinarios no pueden tenerse a petición; surgen sólo en ocasiones especiales, ocasionados por el progreso de la investigación normal. Por consiguiente, es inevitable que una mayoría abrumadora de los problemas de que se ocupan incluso los mejores científicos, caigan ha-bitualmente dentro de una de las tres categorías que hemos mencionado. El trabajo bajo el paradigma no puede llevarse a cabo en ninguna otra forma y la deserción del paradigma significa dejar de practicar la ciencia que se define. Pronto descubriremos que esas deserciones tienen lugar. NATURALEZA DE LA CIENCIA NORMAL 67 Son los puntos de apoyo sobre los que giran las revoluciones científicas. Pero antes de comenzar el estudio de esas revoluciones, necesitamos una visión más panorámica de las empresas científicas normales que preparan el camino. IV. LA CIENCIA NORMAL COMO RESOLUCIÓN DE ENIGMAS la característica más sorprendente de los problemas de investigación normal que acabamos de ver es quizá la de cuán poco aspiran a producir novedades importantes, conceptuales o fenomenales. A veces, como en la medición de una longitud de onda, se conoce de antemano todo excepto los detalles más esotéricos y la latitud típica de expectativa es solamente un poco más amplia. Las mediciones de Coulomb no necesitaban, quizá, haberse ajustado a una ley inversa de los cuadrados. Los hombres que trabajaban en el calentamiento por compresión estaban preparados, frecuentemente, para obtener cualquiera de varios resultados. Sin embargo, incluso en casos como ésos, la gama de resultados esperados y, por ello, asimilables, es siempre pequeño en comparación con la gama que puede concebir la imaginación. Y el proyecto cuyo resultado no cae dentro de esa gama estrecha es, habitualmente, un fracaso de la investigación, fracaso que no se refleja sobre la naturaleza sino sobre el científico. Por ejemplo, en el siglo XVIII se prestaba poca atención a los experimentos que medían la atracción eléctrica con instrumentos tales como la balanza de platillos. Debido a que no producían resultados consistentes ni simples, no podían usarse para articular el paradigma del cual se derivaban. Por consiguiente, continuaban siendo meros hechos, no conexos e imposibles de relacionar con el progreso continuado de la investigación eléctrica. Sólo de manera retrospectiva, en posesión de un paradigma subsiguiente, podemos apreciar las características de los fenómenos 68 RESOLUCIÓN DE ENIGMAS 69 que muestran. Por supuesto, Coulomb y sus contemporáneos poseían también este último paradigma u otro que, al aplicarse al problema de la atracción, producía las mismas expectativas. Es por eso por lo que Coulomb fue capaz de diseñar aparatos que dieron un resultado asimilable por medio de la articulación del paradigma. Pero es también por eso por lo que el resultado no sorprendió a nadie y que varios de los contemporáneos de Coulomb habían podido predecirlo de antemano. Ni siquiera los proyectos cuya finalidad es la articulación de un paradigma tienden hacia Una novedad inesperada. Pero si el objetivo de la ciencia normal no son las novedades sustantivas principales —si el fracaso para acercarse al resultado esperado constituye habitualmente un fracaso como científico— ¿por qué entonces se trabaja en esos problemas? Parte de la respuesta ya ha sido desarrollada. Para los científicos, al menos, los resultados obtenidos mediante la investigación normal son importantes, debido a que contribuyen a aumentar el alcance y la precisión con la que puede aplicarse un paradigma. Sin embargo, esta respuesta no puede explicar el entusiasmo y la devoción de que dan prueba los científicos con respecto a los problemas de la investigación normal. No hay nadie que dedique varios años, por ejemplo, al desarrollo de un espectrómetro perfeccionado o a la producción de una solución mejorada respecto al problema de las cuerdas vibratorias, sólo a causa de la importancia de la información que pueda obtenerse. Los datos que pueden obtenerse calculando efemérides o por medio de mediciones ulteriores con un instrumento que existe ya pueden tener a veces la misma importancia; pero esas actividades son menospreciadas regularmente por los científicos, debido a que en 70 RESOLUCIÓN DE ENIGMAS gran parte son repeticiones de procedimientos que se han llevado a cabo con anterioridad. Ese rechazo proporciona un indicio sobre la fascinación de los problemas de la investigación normal. Aunque pueda predecirse el resultado de manera tan detallada que lo que quede por conocer carezca de importancia, lo que se encuentra en duda es el modo en que puede lograrse ese resultado. El llegar a la conclusión de un problema de investigación normal es lograr lo esperado de una manera nueva y eso requiere la resolución de toda clase de complejos enigmas instrumentales, conceptuales y matemáticos. El hombre que lo logra prueba que es un experto en la resolución de enigmas y el desafío que representan estos últimos es una parte importante del acicate que hace trabajar al científico. Los términos "enigma" y "solucionador de enigmas" realzan varios de los temas que han ido sobresaliendo cada vez más en las páginas precedentes. Los enigmas son, en el sentido absolutamente ordinario que empleamos aquí, aquella categoría especial de problemas que puede servir para poner a prueba el ingenio o la habilidad para resolverlos. Las ilustraciones del diccionario son "enigmas de cuadros en pedazos" y "enigmas de palabras cruzadas", y ésas son las características que comparten con los problemas de la ciencia normal que necesitamos aislar ahora. Acabamos de mencionar una de ellas. No es un criterio de calidad de un enigma el que su resultado sea intrínsecamente interesante o importante. Por el contrario, los problemas verdaderamente apremiantes, como un remedio para el cáncer o el logro de una paz duradera, con frecuencia no son ningún enigma, en gran parte debido a que pueden no tener solución alguna. Consideremos un rompecabezas cuyas piezas se RESOLUCIÓN DE ENIGMAS 71 seleccionan al azar de dos cajas diferentes de rompecabezas. Puesto que ese problema tiene probabilidades de desafiar (aunque pudiera no hacerlo) incluso a los hombres más ingeniosos, no puede servir como prueba de habilidad para resolverlo. En el sentido normal de la palabra, no es ningún enigma. Aunque el valor intrínseco no constituye un criterio para un enigma, sí lo es la existencia asegurada de una solución. Sin embargo, hemos visto ya que una de las cosas que adquiere una comunidad científica con un paradigma, es un criterio para seleccionar problemas que, mientras se dé por sentado el paradigma, puede suponerse que tienen soluciones. Hasta un punto muy elevado, ésos son los únicos problemas que la comunidad admitirá como científicos o que animará a sus miembros a tratar de resolver. Otros problemas, incluyendo muchos que han sido corrientes con anterioridad, se rechazan como metafísicos, como correspondientes a la competencia de otra disciplina o, a veces, como demasiado problemáticos para justificar el tiempo empleado en ellos. Así pues, un paradigma puede incluso aislar a la comunidad de problemas importantes desde el punto de vista social, pero que no pueden reducirse a la forma de enigma, debido a que no pueden enunciarse de acuerdo con las herramientas conceptuales e instrumentales que proporciona el paradigma. Tales problemas pueden constituir una distracción, lección ilustrada brillantemente por varias facetas del baconismo del siglo XVIII y por algunas de las ciencias sociales contemporáneas. Una de las razones por las cuales la ciencia normal parece progresar tan rápidamente es que quienes la practican se concentran en problemas que sólo su propia falta de ingenio podría impedirles resolver. 72 RESOLUCIÓN DE ENIGMAS Sin embargo, si los problemas de la ciencia normal son enigmas en ese sentido, no necesitamos continuar preguntándonos por qué los científicos se dedican a ellos con tanta pasión y devoción. Un hombre puede ser atraído hacia la ciencia por toda clase de razones. Entre ellas se encuentra el deseo de ser útil, la emoción de explorar un territorio nuevo, la esperanza de encontrar orden y el impulso de poner a prueba los conocimientos establecidos. Esos motivos y otros muchos ayudan también a determinar a qué problemas particulares dedicará más tarde su tiempo el científico. Además, aunque el resultado es, a veces, una frustración, existe una buena razón para que motivos como ésos primero lo atraigan y luego lo guíen.1 La empresa científica como un todo resulta útil de vez en cuando, abre nuevos territorios, despliega orden y pone a prueba creencias aceptadas desde hace mucho tiempo. Sin embargo, el |