descargar 0.94 Mb.
|
'amo, amas, amat' es un paradigma, debido a que muestra el patrón o modelo que debe utilizarse para conjugar gran número de otros verbos latinos, v.gr.: para producir 'laudo, laudas, laudat'. En esta aplicación común, el paradigma funciona, permitiendo la renovación de ejemplos cada uno de los cuales podría servir para reemplazarlo. Por otra parte, en una ciencia, un paradigma es raramente un objeto para renovación. En lugar de ello, tal y como una decisión judicial aceptada en el derecho común, es un objeto para una mayor articulación y especificación, en condiciones nuevas o más rigurosas. Para comprender cómo puede suceder esto, debemos reconocer lo muy limitado que puede ser un paradigma en alcance y precisión en el momento de su primera aparición. Los paradig- 51 52 NATURALEZA DE LA CIENCIA NORMAL mas obtienen su status como tales, debido a que tienen más éxito que sus competidores para resolver unos cuantos problemas que el grupo de profesionales ha llegado a reconocer como agudos. Sin embargo, el tener más éxito no quiere decir que tenga un éxito completo en la resolución de un problema determinado o que dé resultados suficientemente satisfactorios con un número considerable de problemas. El éxito de un paradigma —ya sea el análisis del movimiento de Aristóteles, los cálculos hechos por Tolomeo de la posición planetaria, la aplicación hecha por Lavoisier de la balanza o la matematización del campo electromagnético por Maxwell— es al principio, en gran parte, una promesa de éxito discer-nible en ejemplos seleccionados y todavía incompletos. La ciencia normal consiste en la realización de esa promesa, una realización lograda mediante la ampliación del conocimiento de aquellos hechos que el paradigma muestra como particularmente reveladores, aumentando la extensión del acoplamiento entre esos hechos y las predicciones del paradigma y por medio de la articulación ulterior del paradigma mismo. Pocas personas que no sean realmente practicantes de una ciencia madura llegan a comprender cuánto trabajo de limpieza de esta especie deja un paradigma para hacer, o cuán atrayente puede resultar la ejecución de dicho trabajo. Y es preciso comprender esos puntos. Las operaciones de limpieza son las que ocupan a la mayoría de los científicos durante todas sus carreras. Constituyen lo que llamo aquí ciencia normal. Examinada de cerca, tanto históricamente como en el laboratorio contemporáneo, esa empresa parece ser un intento de obligar a la naturaleza a que encaje dentro de los límites preestablecidos y relativamente inflexible que proporciona NATURALEZA DE LA CIENCIA NORMAL 53 el paradigma. Ninguna parte del objetivo de la ciencia normal está encaminada a provocar nuevos tipos de fenómenos; en realidad, a los fenómenos que no encajarían dentro de los límites mencionados frecuentemente ni siquiera se los ve. Tampoco tienden normalmente los científicos a descubrir nuevas teorías y a menudo se muestran intolerantes con las formuladas por otros.1 Es posible que sean defectos. Por supuesto, las zonas investigadas por la ciencia normal son minúsculas; la empresa que está siendo discutida ha restringido drásticamente la visión. Pero esas restricciones, nacidas de la confianza en un paradigma, resultan esenciales para el desarrollo de una ciencia. Al enfocar la atención sobre un cuadro pequeño de problemas relativamente esotéricos, el paradigma obliga a los científicos a investigar alguna parte de la naturaleza de una manera tan detallada y profunda que sería inimaginable en otras condiciones. Y la ciencia normal posee un mecanismo interno que siempre que el paradigma del que proceden deja de funcionar de manera efectiva, asegura el relajamiento de las restricciones que atan a la investigación. En ese punto, los científicos comienzan a comportarse de manera diferente, al mismo tiempo que cambia la naturaleza de sus problemas de investigación. Sin embargo, mientras tanto, durante el periodo en que el paradigma se aplica con éxito, la profesión resolverá problemas que es raro que sus miembros hubieran podido imaginarse y que nunca hubieran emprendido sin él. En lugar de ello, la investigación científica normal va dirigida a la articulación de aquellos fenómenos y teorías que ya proporciona el paradigma. 1 Bernard Barber, "Resistance by Scientists to Scien-tific Discovery", Science, CXXXIV (1961), 596-602. 54 NATURALEZA DE LA CIENCIA NORMAL Para mostrar de manera más clara lo que entendemos por investigación normal o basada en un paradigma, trataré ahora de clasificar e ilustrar los problemas en los que consiste principalmente la ciencia normal. Por conveniencia, pospongo la actividad teórica y comienzo con la reunión de datos o hechos, o sea, con los experimentos y las observaciones que se describen en los periódicos técnicos por medio de los que los científicos informan a sus colegas profesionales de los resultados del progreso de sus investigaciones. ¿Sobre qué aspectos de la naturaleza informan normalmente los científicos? ¿Qué determina su elección? Y, puesto que la mayoría de las observaciones científicas toman tiempo, equipo y dinero, ¿qué es lo que incita a los científicos a llevar esa elección hasta su conclusión? Creo que hay sólo tres focos normales para la investigación científica fáctica y no son siempre ni permanentemente, distintos. Primeramente, encontramos la clase de hechos que el paradigma ha mostrado que son particularmente reveladores de la naturaleza de las cosas. Al emplearlos para resolver problemas, el paradigma ha hecho que valga la pena determinarlos con mayor precisión y en una mayor variedad de situaciones. En un momento u otro, esas determinaciones fácticas importantes han incluido: en astronomía, la posición y magnitud de las estrellas, los periodos de eclipses binarios de los planetas; en física, las gravedades y compresibilidades específicas de los materiales, las longitudes de onda y las intensidades espectrales, las conductividades eléctricas y los potenciales de contacto; y en química, la composición y la combinación de pesos, los puntos de ebullición y la acidez de las soluciones, las fórmulas estructurales y actividades ópticas. NATURALEZA DE LA CIENCIA NORMAL 55 Los esfuerzos por aumentar la exactitud y el alcance con que se conocen hechos como ésos, ocupan una fracción importante de la literatura de la ciencia de observación y experimentación. Repetidas veces se han diseñado aparatos especiales y complejos para esos fines, y el invento, la construcción y el despliegue de esos aparatos han exigido un talento de primera categoría, mucho tiempo y un respaldo financiero considerable. Los sincrotrones y los radiotelescopios son tan sólo los ejemplos más recientes de hasta dónde están dispuestos a ir los investigadores, cuando un paradigma les asegura que los hechos que buscan son importantes. Desde Tycho Brahe has-ta E. O. Lawrence, algunos científicos han adquirido grandes reputaciones, no por la novedad de sus descubrimientos, sino por la precisión, la seguridad y el alcance de los métodos que desarrollaron para la redeterminación de algún tipo de hecho previamente conocido. Una segunda clase habitual, aunque menor, de determinaciones fácticas se dirige hacia los hechos que, aunque no tengan a menudo mucho interés intrínseco, pueden compararse directamente con predicciones de la teoría del paradigma. Como veremos un poco más adelante, cuando pasemos de los problemas experimentales a los problemas teóricos de la ciencia normal, es raro que haya muchos campos en los que una teoría científica, sobre todo si es formulada en una forma predominantemente matemática, pueda compararse directamente con la naturaleza. No más de tres de tales campos son accesibles, hasta ahora, a la teoría general de la relatividad de Einstein.2 Además, incluso en los campos en que es posible la aplicación, exige a menudo, 2 El único punto duradero de comprobación que es reconocido todavía en la actualidad es el de la precesión 56 NATURALEZA DE LA CIENCIA NORMAL aproximaciones teóricas e instrumentales que limitan severamente el acuerdo que pudiera esperarse. El mejoramiento de ese acuerdo o el descubrimiento de nuevos campos en los que el acuerdo pueda demostrarse, representan un desafío constante para la habilidad y la imaginación de los experimentadores y los observadores. Los telescopios especiales para demostrar la predicción de Copérnico sobre la paralaje anual; la máquina de Atwood, inventada casi un siglo después de los Principia, para proporcionar la primera demostración inequívoca de la segunda ley de Newton; el aparato de Foucault, para demostrar que la velocidad de la luz es mayor en el aire que en el agua; o el gigantesco contador de centelleo, diseñado para demostrar la existencia del neutrino —esos aparatos especiales y muchos otros como ellos— ilustran el esfuerzo y el ingenio inmensos que han sido necesarios para hacer que la naturaleza y la teoría lleguen a un acuerdo cada vez más estrecho.3 Este intento de demostrar el acuerdo es un segundo tipo de trabajo del perihelio de Mercurio. El corrimiento hacia el rojo del espectro de la luz de las estrellas distantes puede deducirse a partir de consideraciones más elementales que la relatividad general y lo mismo puede ser posible para la curvatura de la luz en torno al Sol, un punto que en la actualidad está a discusión. En cualquier caso, las mediciones de este último fenómeno continúan siendo equivocas. Es posible que se haya establecido, hace muy poco tiempo, otro punto complementario de comprobación: el corrimiento gravitacional de la radiación de Mossbauer. Quizás haya pronto otros en este campo actualmente activo, pero que durante tanto tiempo permaneció aletargado. Para obtener un informe breve y al día sobre ese problema, véase "A Report on the NASA Con-ference on Experimental Tests of Theories of Relativity", de L. I. Schiff, Physics Today, XIV (1961), 42-48. 3 Sobre dos de los telescopios de paralaje, véase A History of Science, Technology, and Philosophy in the Eighteenth Century (2a ed., Londres, 1952), pp. 103-5, de NATURALEZA DE LA CIENCIA NORMAL 57 experimental normal y depende de un paradigma de manera todavía más evidente que el anterior. La existencia del paradigma establece el problema que debe resolverse; con frecuencia, la teoría del paradigma se encuentra implicada directamente en el diseño del aparato capaz de resolver el problema. Por ejemplo, sin los Principia, las mediciones realizadas con la máquina de Atwood no hubieran podido significar nada en absoluto. Una tercera clase de experimentos y observaciones agota, creo yo, las tareas de reunión de hechos de la ciencia normal. Consiste en el trabajo empírico emprendido para articular la teoría del paradigma, resolviendo algunas de sus ambigüedades residuales y permitiendo resolver problemas hacia los que anteriormente sólo se había llamado la atención. Esta clase resulta la más importante de todas y su descripción exige una subdivisión. En las ciencias de carácter más matemático, algunos de los experimentos cuya finalidad es la articulación, van encaminados hacia la determinación de constantes físicas. Por ejemplo: el trabajo de Newton indicó que la fuerza entre dos unidades de masa a la unidad de distancia sería la misma para todos los tipos de materia en todas las posiciones, en el Universo. Pero sus propios problemas podían resolverse sin calcular siquiera el tamaño de esa atracción, la constante gravitacional universal; y Abraham Wolf. Sobre la máquina Atwood, véase Patterns of Discovery, de N. R. Hanson (Cambridge, 1958), pp. 100-102, 207-8. Para los últimos dos aparatos especiales, véase "Méthode génèrale pour mesurer la vitesse de la lumière dans l'air et les milieux transparents. Vitesses relatives de la lumière dans l'air et dans l'eau...", de M. L. Fou-cault, Comptes rendus... de l'Académie des sciences, xxx (1850), 551-60; y "Detection of the Free Neutrino: A Con-firmation", de C. L. Cowan, Science, CXXIV (1956), 103-4. 58 NATURALEZA DE LA CIENCIA NORMAL nadie diseñó un aparato capaz de determinarla durante todo el siglo que siguió a la aparición de los Principia. La famosa determinación de Cavendish, en 1790, tampoco fue la última. A causa de su posición central en la teoría física, los valores perfeccionados de la constante gravita-cional han sido desde entonces objeto de esfuerzos repetidos por parte de experimentadores extraordinarios.4 Otros ejemplos del mismo tipo de trabajo continuo incluirían la determinación de la unidad astronómica, el número de Avogadro, el coeficiente de Joule, la carga electrónica, etc. Pocos de esos esfuerzos complejos hubieran sido concebidos y ninguno se habría llevado a cabo sin una teoría de paradigma que definiera el problema y garantizara la existencia de una solución estable. Los esfuerzos para articular un paradigma, sin embargo, no se limitan a la determinación de constantes universales. Por ejemplo, pueden tener también como meta leyes cuantitativas: la Ley de Boyle que relaciona la presión del gas con el volumen, la Ley de Coulomb sobre la atracción eléctrica y la fórmula de Joule que relaciona el calor generado con la resistencia eléctrica y con la corriente, se encuentran en esta categoría. Quizá no resulte evidente el hecho de que sea necesario un paradigma, como requisito previo para el descubrimiento de leyes como ésas. Con frecuencia se oye decir que son descubiertas examinando mediciones tomadas por su propia cuenta y sin compromiso teórico, pero la historia no ofrece ningún respaldo a un método tan excesi- 4 J. H. Poynting revisa unas dos docenas de mediciones de la constante gravitacional entre 1741 y 1901, en "Gravitation Constant and Mean Density of the Earth", Encyclopaedia Britannica (11a ed.; Cambridge, 1910-11), XII, 38549. NATURALEZA DE LA CIENCIA NORMAL 59 vamente baconiano. Los experimentos de Boyle no eran concebibles (y si se hubieran concebido hubieran recibido otra interpretación o ninguna en absoluto) hasta que se reconoció que el aire era un fluido elástico al que podían aplicarse todos los conceptos complejos de la hidrostática.5 El éxito de Coulomb dependió de que construyera un aparato especial para medir la fuerza entre dos cargas extremas. (Quienes habían medido previamente las fuerzas eléctricas, utilizando balanzas de platillo, etc., no descubrieron ninguna consistencia o regularidad simple.) Pero a su vez, ese diseño dependió del reconocimiento previo de que cada partícula del fluido eléctrico actúa sobre cada una de las otras a cierta distancia. Era la fuerza entre esas partículas —la única fuerza que con seguridad podía suponerse una función simple de la distancia— la que buscaba Coulomb.6 También los experimentos de Joule pueden utilizarse para ilustrar cómo de la articulación de un paradigma, surgen leyes cuantitativas. En efecto, la relación existente entre el paradigma cualitativo y la ley cuantitativa es tan general y cercana que, desde Galileo, tales leyes han sido con frecuencia adivinadas correctamente, con ayuda de un paradigma, muchos 5 Para la conversión plena de conceptos hidrostáticos a la neumática, véase The Physical Treatises of Pascal, trad, de I. H. B. Spiers y A. G. H. Spiers, con una introducción y notas de F. Barry (Nueva York, 1937). La presentación original que hizo Torricelli del paralelismo ("Vivimos sumergidos en el fondo de un océano del elemento aire") se presenta en la p. 164. Su rápido desarrollo se muestra en los dos tratados principales. 6 Duane Roller y Duane H. D. Roller, The Development of the Concept of Electric Charge: Electricity from the Greeks to Coulomb ("Harvard Case Histories in Experimental Science", Caso 8; Cambridge, Mass., 1954), páginas 66-80. 60 NATURALEZA DE LA CIENCIA NORMAL años antes de que pudiera diseñarse un aparato para su determinación experimental.7 Finalmente, existe un tercer tipo de experimento encaminado hacia la articulación de un paradigma. Estos experimentos, más que otros, pueden asemejarse a la exploración y sobre todo prevalecen en los periodos y en las ciencias que se ocupan más de los aspectos cualitativos que de los cuantitativos relativos a la regularidad de la naturaleza. Con frecuencia un paradigma, desarrollado para un conjunto de fenómenos, resulta ambiguo al aplicarse a otro estrechamente relacionado. Entonces son necesarios experimentos para escoger entre los métodos alternativos, a efecto de aplicar el paradigma al nuevo campo de interés. Por ejemplo, las aplicaciones del paradigma de la teoría calórica, fueron el calentamiento y el enfriamiento por medio de mezclas y del cambio de estado. Pero el calor podía ser soltado o absorbido de muchas otras maneras —p. ej. por medio de combinaciones químicas, por fricción y por compresión o absorción de un gas— y la teoría podía aplicarse a cada uno de esos otros fenómenos de varias formas. Si por ejemplo, el vacío tuviera una capacidad térmica, el calentamiento por compresión podría explicarse como el resultado de la mezcla de gas con vacío. O podría deberse a un cambio en el calor específico de los gases con una presión variable. Además, había varias otras explicaciones posibles. Se emprendieron muchos experimentos para elaborar esas diversas posibilidades y para hacer una distinción entre ellas; todos esos experimentos procedían de la teoría calórica como paradigma y todos se aprovecharon de ella en el 7 Para obtener ejemplos, véase "The Function of Mea-surement in Modern Physical Science", de T. S. Kuhn, |