Programa de formacion complementaria






descargar 50.3 Kb.
títuloPrograma de formacion complementaria
fecha de publicación02.09.2015
tamaño50.3 Kb.
tipoPrograma
m.exam-10.com > Historia > Programa
INSTITUCION EDUCATIVA NORMAL SUPERIOR SANTIAGO DE CALI

PROGRAMA DE FORMACION COMPLEMENTARIA

SEMESTRE 2-2
A la hora de abordar el currículo de matemáticas en los Proyectos Educativos Institucionales, se hace necesario reflexionar sobre preguntas como las siguientes:

¿Cómo surgen la matemáticas?

¿Qué son las matemáticas?

¿En qué consiste la actividad matemática en la escuela?

¿Para qué y cómo se enseñan las matemáticas?

¿Qué relación se establece entre las matemáticas y la cultura?

¿Cómo se puede organizar el currículo de matemáticas?

¿Qué énfasis es necesario hacer?

¿Qué principios, estrategias y criterios orientarían la evaluación del desempeño matemático de los

Alumnos?

Una reflexión sobre diferentes concepciones acerca de la naturaleza de las matemáticas y sus implicaciones didácticas
Antes de abordar esta reflexión nos parece pertinente hacer referencia a una exploración realizada con cerca de 100 docentes de diferentes niveles de la enseñanza básica y con algunos estudiantes del programa de Especialización en docencia de las matemáticas, acerca de sus concepciones sobre la naturaleza de las matemáticas y la naturaleza del conocimiento matemático escolar con el objeto de contrastar dichas concepciones con las planteadas en literatura especializada, así como con las percibidas por nosotros a lo largo de nuestra experiencia.
Con respecto a las matemáticas, algunos docentes encuestados las asumen como un cuerpo estático y unificado de conocimientos, otros las conciben como un conjunto de estructuras interconectadas, otros simplemente como un conjunto de reglas, hechos y herramientas; hay quienes las describen como la ciencia de los números y las demostraciones.
En lo que al hacer matemático se refiere, algunos profesores lo asocian con la actividad de solucionar problemas, otros con el ordenar saberes matemáticos establecidos y otros con el construir nuevos saberes a partir de los ya conocidos, siguiendo reglas de la lógica.
El conocimiento matemático escolar es considerado por algunos como el conocimiento cotidiano que tiene que ver con los números y las operaciones, y por otros, como el conocimiento matemático elemental que resulta de abordar superficialmente algunos elementos mínimos de la matemática disciplinar. En general consideran que las matemáticas en la escuela tienen un papel esencialmente instrumental, que por una parte se refleja en el desarrollo de habilidades y destrezas para resolver problemas de la vida práctica, para usar ágilmente el lenguaje simbólico, los procedimientos y algoritmos y, por otra, en el desarrollo del pensamiento lógico-formal.
Trataremos de explorar el origen de algunas de las concepciones anteriormente descritas, a la luz de posturas teóricas de filósofos, de matemáticos y de educadores matemáticos, desde diferentes ámbitos, con el propósito fundamental de analizar las implicaciones didácticas de dichas concepciones.

¿De dónde provienen las concepciones acerca del conocimiento matemático escolar?

La historia da cuenta de siglos y siglos de diversas posiciones y discusiones sobre el origen y la naturaleza de las matemáticas; es decir, sobre si las matemáticas existen fuera de la mente humana o si son una creación suya; si son exactas e infalibles o si son falibles, corregibles, evolutivas y provistas de significado como las demás ciencias.
a) El Platonismo

Éste considera las matemáticas como un sistema de verdades que han existido desde siempre e independientemente del hombre. La tarea del matemático es descubrir esas verdades matemáticas, ya que en cierto sentido está “sometido” a ellas y las tiene que obedecer. Por ejemplo, si construimos un triángulo de catetos c, d y de hipotenusa h, entonces irremediablemente encontraremos que: h2 = c2 + d2.
El Platonismo reconoce que las figuras geométricas, las operaciones y las relaciones aritméticas nos resultan en alguna forma misteriosas; que tienen propiedades que descubrimos sólo a costa de un gran esfuerzo; que tienen otras que nos esforzamos por descubrir pero no lo conseguimos, y que existen otras que ni siquiera sospechamos, ya que las matemáticas trascienden la mente humana, y existen fuera de ella como una “realidad ideal ” independiente de nuestra actividad creadora y de nuestros conocimientos previos.


  1. ¿Cuántos de nuestros profesores y alumnos pertenecerán, sin proponérselo, y más aún sin saberlo, al Platonismo?

  2. ¿Cuáles implicaciones favorables y cuáles desfavorables se pueden originar en esa situación?


b) El Logicismo

Esta corriente de pensamiento considera que las matemáticas son una rama de la Lógica, con vida propia, pero con el mismo origen y método, y que son parte de una disciplina universal que regiría todas las formas de argumentación.
Propone definir los conceptos matemáticos mediante términos lógicos, y reducir los teoremas de las matemáticas, los teoremas de la Lógica, mediante el empleo de deducciones lógicas.
Prueba de lo anterior es la afirmación de que “La Lógica matemática es una ciencia que es anterior a las demás, y que contiene las ideas y los principios en que se basan todas las ciencias” (Claro que hay que tener en cuenta que para los antiguos, la Lógica era más un arte que una ciencia: un arte que cultiva la manera de operar válidamente con conceptos y proposiciones; un juego de preguntas y respuestas; un pasatiempo intelectual que se realizaba en la Academia de Platón y en el Liceo de Aristóteles, en el que los contendientes se enfrentaban entre sí mientras el público aplaudía los ataques y las respuestas.
Esta corriente reconoce la existencia de dos Lógicas que se excluyen mutuamente: la deductiva y la inductiva. La deductiva busca la coherencia de las ideas entre sí; parte de premisas generales para llegar a conclusiones específicas.
La inductiva procura la coherencia de las ideas con el mundo real; parte de observaciones específicas para llegar a conclusiones generales, siempre provisorias, que va refinando a través de experiencias y contrastaciones empíricas.
Una de las tareas fundamentales del Logicismo es la “logificación” de las matemáticas, es decir, la reducción de los conceptos matemáticos a los conceptos lógicos. El primer paso fue la reducción o logificación del concepto de número.


Frege hizo grandes aportes a lo que hoy conocemos como Lógica matemática: cálculo proposicional, reglas para el empleo de los cuantificadores universales y existenciales, y el análisis lógico del método de prueba de inducción matemática.
El Logicismo, lo mismo que otras teorías sobre fundamentos de las matemáticas, tiene que afrontar el delicado reto de evitar caer en las paradojas, sin que haya conseguido una solución plenamente satisfactoria, después de un siglo de discusiones y propuestas alternativas. Entre los problemas que reaparecen en la discusión sobre filosofía de las matemáticas, está el de la logificación o aritmetización del continuo de los números reales:

  1. ¿Se puede entender lo continuo (los reales) a partir de lo discreto (aritmética de los naturales)?

  2. ¿Cuál es, como docentes o como estudiantes, nuestra posición frente a esta forma de concebir las matemáticas y la Lógica?


c) El Formalismo

Esta corriente reconoce que las matemáticas son una creación de la mente humana y considera que consisten solamente en axiomas, definiciones y teoremas como expresiones formales que se ensamblan a partir de símbolos, que son manipulados o combinados de acuerdo con ciertas reglas o convenios preestablecidos. Para el formalista las matemáticas comienzan con la inscripción de símbolos en el papel; la verdad de la matemática formalista radica en la mente humana pero no en las construcciones que ella realiza internamente, sino en la coherencia con las reglas del juego simbólico respectivo. En la actividad matemática, una vez fijados los términos iníciales y sus relaciones básicas, ya no se admite nada impreciso u oscuro; todo tiene que ser perfecto y bien definido. Las demostraciones tienen que ser rigurosas, basadas únicamente en las reglas del juego deductivo respectivo e independiente de las imágenes que asociemos con los términos y las relaciones.


  1. ¿Qué tanto énfasis formalista hay en la educación matemática en nuestros establecimientos educativos?

  2. ¿Qué actitud produce este tratamiento formalista en la mayoría de nuestros alumnos?

  3. ¿Qué clase de implicaciones tiene este hecho en el desarrollo integral y pleno de los estudiantes?


d) El Intuicionismo

Considera las matemáticas como el fruto de la elaboración que hace la mente a partir de lo que percibe a través de los sentidos y también como el estudio de esas construcciones mentales cuyo origen o comienzo puede identificarse con la construcción de los números naturales.
Puede decirse que toda la matemática griega, y en particular la aritmética, es espontáneamente intuicionista, y que la manera como Kant concebía la aritmética y la geometría es fundamentalmente intuicionista, por más que el Intuicionismo como escuela de filosofía de las matemáticas se haya conformado sólo a comienzos del siglo XX.
El principio básico del Intuicionismo es que las matemáticas se pueden construir; que han de partir de lo intuitivamente dado, de lo finito, y que sólo existe lo que en ellas haya sido construido mentalmente con ayuda de la intuición.
El fundador del Intuicionismo moderno es Luitzen Brouwer (1881-1968), quien considera que en matemáticas la idea de existencia es sinónimo de constructibilidad y que la idea de verdad es sinónimo de demostrabilidad. Según lo anterior, decir de un enunciado matemático que es verdadero equivale a afirmar que tenemos una prueba constructiva de él. De modo similar, afirmar de un enunciado matemático que es falso significa que si suponemos que el enunciado es verdadero tenemos una prueba constructiva de que caemos en una contradicción como que el uno es el mismo dos.
Conviene aclarar que el Intuicionismo no se ocupa de estudiar ni de descubrir las formas como se realizan en la mente las construcciones y las intuiciones matemáticas, sino que supone que cada persona puede hacerse consciente de esos fenómenos. La atención a las formas como ellos ocurren es un rasgo característico de otra corriente de los fundamentos de las matemáticas: el Constructivismo, al cual nos referimos enseguida.
e) El Constructivismo

Está muy relacionado con el Intuicionismo pues también considera que las matemáticas son una creación de la mente humana, y que únicamente tienen existencia real aquellos objetos matemáticos que pueden ser construidos por procedimientos finitos a partir de objetos primitivos. Con las ideas constructivistas van muy bien algunos planteamientos de George Cantor (1845-1918): “La esencia de las matemáticas es su libertad. Libertad para construir, libertad para hacer hipótesis ” (Davis, Hersh,1988: 290).
El Constructivismo matemático es muy coherente con la Pedagogía Activa y se apoya en la Psicología Genética; se interesa por las condiciones en las cuales la mente realiza la construcción de los conceptos matemáticos, por la forma como los organiza en estructuras y por la aplicación que les da; todo ello tiene consecuencias inmediatas en el papel que juega el estudiante en la generación y desarrollo de sus conocimientos. No basta con que el maestro haya hecho las construcciones mentales; cada estudiante necesita a su vez realizarlas; en eso nada ni nadie lo puede reemplazar.


  1. ¿En qué medida el trabajo en clase de matemáticas tiene un enfoque constructivista?

  2. ¿Qué implicaciones se derivan de ese enfoque para el desarrollo integral de los estudiantes?

  3. ¿Qué tanta compatibilidad o incompatibilidad hay entre las corrientes mencionadas?

  4. ¿Qué relación tienen con el currículo de matemáticas?


El saber matemático y la transposición didáctica

El saber constituido se presenta bajo formas diversas, por ejemplo la forma de preguntas y respuestas. La presentación axiomática es una presentación clásica de las matemáticas.
Además de las virtudes científicas que se le conocen, parece estar maravillosamente adaptada para la enseñanza.
Permite definir en cada instante los objetos que se estudian con ayuda de las nociones introducidas precedentemente y, así, organizar la adquisición de nuevos conocimientos con el auxilio de adquisiciones anteriores. Promete pues al estudiante y a su profesor un medio para ordenar su actividad y acumular en un mínimo de tiempo un máximo de “conocimiento” bastante cercano al “conocimiento erudito”. Evidentemente, debe estar complementada con ejemplos y problemas cuya solución exige poner en acción esos conocimientos.
Pero esta presentación elimina completamente la historia de esos conocimientos, es decir la sucesión de dificultades y problemas que han provocado la aparición de los conceptos fundamentales, su uso para plantear nuevos problemas, la intrusión de técnicas y problemas nacidos de los progresos de otros sectores, el rechazo de ciertos puntos de vista que llevan a malentendidos, y las innumerables discusiones al respecto.
Enmascara el “verdadero” funcionamiento de la ciencia, imposible de comunicar y describir fielmente desde el exterior, para poner en su lugar una génesis ficticia. Para facilitar la enseñanza, aísla ciertas nociones y propiedades del tejido de actividades en donde han tomado su origen, su sentido, su motivación y su empleo.
Ella los transpone en el contexto escolar. Los epistemólogos llaman transposición didáctica a esta operación.
Ella tiene su utilidad, sus inconvenientes y su papel, aun para la construcción de la ciencia.
Es a la vez inevitable, necesaria y en un sentido deplorable. Debe mantenérsele vigilada.

El trabajo del matemático

Antes de comunicar lo que piensa haber hallado, un investigador debe primero determinarlo: no es fácil distinguir en el laberinto de las reflexiones, aquellas que son susceptibles de convertirse en un saber nuevo e interesante para los demás; las demostraciones obtenidas son raramente las de las conjeturas consideradas; debe emprenderse todo un reordenamiento de los conocimientos vecinos, anteriores o nuevos.
Es preciso también suprimir todas las reflexiones in útiles, la huella de los errores cometidos y de los procederes erráticos. Hay que ocultar las razones que han llevado en esta dirección y las condiciones personales que han conducido al éxito, problematizar hábilmente las notas, aun aquellas un poco banales, pero evitar las trivialidades... Hay también que buscar la teoría más general en la que los resultados siguen siendo valederos...
De esta manera, el productor del conocimiento despersonaliza, descontextualiza y destemporaliza lo más posible sus resultados.
Ese trabajo es indispensable para que el lector pueda tomar conciencia de esos resultados y convencerse de su validez sin seguir el mismo camino para su descubrimiento, beneficiándose de las posibilidades que se le ofrecen para su utilización.
Entonces otros lectores transforman a su vez esos resultados, los reformulan, los aplican, los generalizan, si son esas sus necesidades. Si llega el caso los destruyen, ya sea identificándolos con conocimientos ya existentes, ya sea incluyéndolos en resultados más importantes, o simplemente olvidándolos... y hasta mostrándolos falsos. De esta manera la organización de los conocimientos depende, desde su origen, de las exigencias impuestas a su autor para su comunicación. Ella no cesa de ser a continuación modificada por los mismos motivos, hasta el punto de que su sentido cambia muy profundamente: la transposición didáctica se desarrolla en gran parte en la comunidad científica y se prosigue en los medios cultivados. Esta comunidad funciona sobre la base de las relaciones que sostienen el interés y el compromiso, tanto personales como contextuales de cuestiones matemáticas y la pérdida de este interés hacia la producción de un texto del conocimiento tan objetivo como sea posible.
El trabajo del alumno

El trabajo intelectual del alumno debe por momentos ser comparable a esta actividad científica. Saber matemáticas no es solamente aprender definiciones y teoremas, para reconocer la ocasión de utilizarlas y aplicarlas; sabemos bien que hacer matemáticas implica que uno se ocupe de problemas, pero a veces se olvida que resolver un problema no es más que parte del trabajo; encontrar buenas preguntas es tan importante como encontrarles soluciones. Una buena reproducción por parte del alumno de una actividad científica exigiría que él actúe, formule, pruebe, construya modelos, lenguajes, conceptos, teor ías, que los intercambie con otros, que reconozca las que están conformes con la cultura, que tome las que le son útiles, etcétera.
Para hacer posible semejante actividad, el profesor debe imaginar y proponer a los alumnos situaciones que puedan vivir y en las que los conocimientos van a aparecer como la solución óptima y descubrible en los problemas planteados.


El trabajo del profesor

El trabajo del profesor es en cierta medida inverso al trabajo del investigador, él debe hacer una re contextualización y una re personalización de los conocimientos. Ellos van a convertirse en el conocimiento de un alumno, es decir en una respuesta bastante natural a condiciones relativamente particulares, condiciones indispensables para que tengan un sentido para él. Cada conocimiento debe nacer de la adaptación a una situación específica, pues las probabilidades se crean en un contexto y en unas relaciones con el medio, diferentes de aquellos en donde se inventa o se utiliza la aritmética o el álgebra.
El profesor debe pues simular en su clase una micro sociedad científica, si quiere que los conocimientos sean medios económicos para plantear buenos problemas y para solucionar debates, si quiere que los lenguajes sean medios de dominar situaciones de formulación y que las demostraciones sean pruebas.
Pero debe también dar a los alumnos los medios para encontrar en esta historia particular que les ha hecho vivir, lo que es el saber cultural y comunicable que ha querido enseñarles. Los alumnos deben a su turno re descontextualizar y redespersonalizar su saber con el fin de identificar su producción con el saber que se utiliza en la comunidad científica y cultural de su época.
Claro está, se trata de una simulación que no es la <> actividad científica, as í como el conocimiento presentado de manera axiomática no es el <> conocimiento”. (Brousseau, 1986).



Hacer matemáticas implica que uno se ocupe de problemas, pero a veces se olvida que resolver un problema no es más que parte del trabajo; encontrar buenas preguntas es tan importante como encontrarles soluciones.




APORTES TEORICOS ALGUNAS CONCEPCIONES SOBRE LAS MATEMÁTICAS

En la reflexión sobre las propias concepciones hacia las matemáticas habrán surgido diversas opiniones y creencias sobre las matemáticas, la actividad matemática y la capacidad para aprender matemáticas. Pudiera parecer que esta discusión está muy alejada de los intereses prácticos del profesor, interesado fundamentalmente por cómo hacer más efectiva la enseñanza de las matemáticas (u otro tema) a sus alumnos. La preocupación sobre qué es un cierto conocimiento, forma parte de la epistemología o teoría del conocimiento, una de las ramas de la filosofía. Sin embargo, las creencias sobre la naturaleza de las matemáticas son un factor que condiciona la actuación de los profesores en la clase, como razonamos a continuación.

Supongamos, por ejemplo, que un profesor cree que los objetos matemáticos tienen una existencia propia (incluso aunque esta “existencia” sea no material). Para él, objetos tales como “triángulo”, “suma”, “fracciones”, “probabilidad”, existen, tal como lo hacen los elefantes o los planetas. En este caso, sólo tenemos que ayudar a los niños a “descubrirlos”, ya que son independientes de las personas que los usan y de los problemas a los que se aplican, e incluso de la cultura.

Para este profesor, la mejor forma de enseñar matemáticas sería la presentación de estos objetos, del mismo modo que la mejor forma de hacer que un niño comprenda qué es un elefante es llevarlo al zoológico, o mostrarle un vídeo sobre la vida de los elefantes. ¿Cómo podemos mostrar lo que es un círculo u otro objeto matemático? La mejor forma sería enseñar sus definiciones y propiedades, esto es lo que este profesor consideraría “saber matemáticas”. Las aplicaciones de los conceptos o la resolución de problemas matemáticos serían secundarios para este profesor. Éstas se tratarían después de que el alumno hubiera aprendido las matemáticas.

  • Otros profesores consideran las matemáticas como un resultado del ingenio y la actividad humana (como algo construido), al igual que la música, o la literatura. Para ellos, las matemáticas se han inventado, como consecuencia de la curiosidad del hombre y su necesidad de resolver una amplia variedad de problemas, como, por ejemplo, intercambio de objetos en el comercio, construcción, ingeniería, astronomía, etc.

Para estos profesores, el carácter más o menos fijo que hoy día o en una etapa histórica anterior tienen los objetos matemáticos, es debido a un proceso de negociación social. Las personas que han creado estos objetos han debido ponerse de acuerdo en cuanto a sus reglas de funcionamiento, de modo que cada nuevo objeto forma un todo coherente con los anteriores.

Por otro lado, la historia de las matemáticas muestra que las definiciones, propiedades y teoremas enunciados por matemáticos famosos también son falibles y están sujetos a evolución. De manera análoga, el aprendizaje y la enseñanza deben tener en cuenta que es natural que los alumnos tengan dificultades y cometan errores en su proceso de aprendizaje y que se puede aprender de los propios errores. Esta es la posición de las teorías psicológicas constructivistas sobre el aprendizaje de las matemáticas, las cuales se basan a su vez en la visión filosófica sobre las matemáticas conocidas como constructivismo social.

Estilos de enseñanza

Estructuralismo: Para el estructuralismo, la matemática es una ciencia lógico deductiva y ese carácter es el que debe informar la enseñanza de la misma.

El estilo estructuralista hunde sus raíces históricas en la enseñanza de la geometría euclídea y en la concepción de la matemática como logro cognitivo caracterizado por ser un sistema deductivo cerrado y fuertemente organizado. Es por lo que, a los ojos de los estructuralistas, a los alumnos se les debe enseñar la matemática como un sistema bien estructurado, siendo además la estructura del sistema la guía del proceso de aprendizaje. Ese fue y sigue siendo el principio fundamental de la reforma conocida con el nombre de Matemática Moderna y cuyas consecuencias llegan hasta nuestros días. El estilo estructuralista carece del componente horizontal pero cultiva en sobremanera la componente vertical.



Mecanicismo: El estilo mecanicista se caracteriza por la consideración de la matemática como un conjunto de reglas. A los alumnos se les enseña las reglas y las deben aplicar a problemas que son similares a los ejemplos previos. Raramente se parte de problemas reales o cercanos al alumno, más aún, se presta poca atención a las aplicaciones como génesis de los conceptos y procedimientos, y mucha a la memorización y automatización de algoritmos de uso restringido. El estilo mecanicista se caracteriza por una carencia casi absoluta de los dos tipos de matematización.

El ataque más demoledor a este planteamiento de enseñanza proviene de H.Freudenthal (1991):   " De acuerdo con la filosofía mecanicista el hombre es como una computadora, de tal forma que su actuación puede ser programada por medio de la práctica. En el nivel más bajo, es la práctica en las operaciones aritméticas y algebraicas (incluso geométricas) y la solución de problemas que se distinguen por pautas fácilmente reconocibles y procesables. Es en este, el más bajo nivel dentro de la jerarquía de los más potentes ordenadores, donde se sitúa al hombre".

Freudenthal termina su alegato con la siguiente pregunta dirigida a sus propagadores: ¿Por qué enseñar a los alumnos a ejecutar tareas al nivel en el que los ordenadores son mucho más rápidos, económicos y seguros?

Empirismo: Toma como punto de partida la realidad cercana al alumno, lo concreto. La enseñanza es básicamente utilitaria, los alumnos adquieren experiencias y contenidos útiles, pero carece de profundización y sistematización en el aprendizaje. El empirismo está enraizado profundamente en la educación utilitaria inglesa.

Realista: El estilo realista parte así mismo de la realidad, requiere de matematización, pero al contrario que en el empiricista se profundiza y se sistematiza en los aprendizajes, poniendo la atención en el desarrollo de modelos, esquemas, símbolos, etc. El principio didáctico es la reconstrucción o invención de la matemática por el alumno, así , las construcciones de los alumnos son fundamentales. Es una enseñanza orientada básicamente a los procesos. Este estilo surgió en los Países Bajos partiendo de las ideas de Freudenthal y ha sido desarrollado por los actuales miembros del Freudenthal Instituto de la Universidad de Utrecht.

Añadir el documento a tu blog o sitio web

similar:

Programa de formacion complementaria iconPrograma de formacion complementaria

Programa de formacion complementaria iconFormación complementaria

Programa de formacion complementaria iconEstudios Secundarios Estudios Primarios Colegio Nacional San José...

Programa de formacion complementaria iconPrograma de alim complementaria de la embarazada

Programa de formacion complementaria iconPrograma de Formación 14

Programa de formacion complementaria iconPrograma informativo de la formacióN

Programa de formacion complementaria iconPrograma de formación de grado

Programa de formacion complementaria iconPrograma nacional de formación de

Programa de formacion complementaria iconPrograma de formación de grado

Programa de formacion complementaria iconPrograma de Formación : Nivel






© 2015
contactos
m.exam-10.com